When the worm turned: Concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia

Geology ◽  
1999 ◽  
Vol 27 (7) ◽  
pp. 625 ◽  
Author(s):  
Mary L. Droser ◽  
James G. Gehling ◽  
Sören Jensen
2002 ◽  
Vol 76 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Brian R. Pratt

The fossil record of siliceous sponges—Hexactinellida and demosponge “Lithistida”—hinges upon both body fossils plus isolated spicules mostly recovered from limestones by acid digestion. The earliest record of siliceous sponge spicules extends back to the late Neoproterozoic of Hubei, southern China (Steiner et al., 1993) and Mongolia (Brasier et al., 1997), and body fossils attributed to the hexactinellids have been described from the Ediacaran of South Australia (Gehling and Rigby, 1996); thus they are the oldest-known definite representatives of extant animal phyla. The Early Cambrian saw a remarkable diversification in spicule morphology, with the appearance of an essentially “modern” array of forms (Zhang and Pratt, 1994). While a diversity decline may have occurred with the late Early Cambrian extinction(s), the subsequent Paleozoic and Mesozoic fossil record of spicules shows a relatively consistent range of morphologies (e.g., Mostler, 1986; Bengtson et al., 1990; Webby and Trotter, 1993; Kozur et al., 1996; Zhang and Pratt, 2000). However, because spicule form is not restricted to individual taxa and many sponge species secrete a variety of spicule shapes, it is difficult to gauge true siliceous sponge diversity and to explore their biostratigraphic utility using only isolated spicules.


2000 ◽  
Vol 74 (5) ◽  
pp. 979-982 ◽  
Author(s):  
Xingliang Zhang ◽  
Jian Han ◽  
Degan Shu

The early Cambrian Chengjiang Lagerstatte, generally regarded as late Atdabanian (Qian and Bengtson, 1989; Bengtson et al., 1990), has become celebrated for perhaps the earliest biota of soft-bodied organisms known from the fossil record and has proven to be critical to our understanding of early metazoan evolution. The Sirius Passet fauna from Peary Land, North Greenland, another important repository of soft-bodied and poorly sclerotized fossils, was also claimed as Early Cambrian (Conway Morris et al., 1987; Budd, 1995). The exact stratigraphic position of the Sirius Passet fauna (Buen Formation) is still uncertain, although the possibility of late Atdabanian age was proposed (Vidal and Peel, 1993). Recent work dates it in the “Nevadella” Biozone (Budd and Peel, 1998). It therefore appears to be simultaneous with or perhaps slightly younger than Chengjiang Lagerstatte, Eoredlichia Biozone (Zhuravlev, 1995). The Emu Bay Shale of Kangaroo Island, South Australia, has long been famous as a source of magnificent specimens of the trilobites Redlichia takooensis and Hsunaspis bilobata. It is additionally important as the only site in Australia so far to yield a Burgess-Shale-type biota (Glaessner, 1979; Nedin, 1992). The Emu Bay Shale was considered late Early Cambrian in age (Daily, 1956; Öpik, 1975). But Zhang et al.(1980) reassessed its age based on data from the Chinese Early Cambrian. The occurrence of Redlichia takooensis and closely related species of Hsunaspis indicates an equivalence to the Tsanglangpuian in the Chinese sequence, and the contemporary South Australia fauna correlate with the Botomian of Siberia (Bengtson et al., 1990). Thus the Emu Bay Shale is younger than the upper Atdabanian Chengjiang Lagerstatte, Chiungchussuian.


2004 ◽  
Vol 51 ◽  
pp. 11-37 ◽  
Author(s):  
Christian B. Skovsted

A diverse mollusc fauna from the Bastion Formation (Early Cambrian, middle Dyeran Stage) of North-East Greenland includes fifteen species (thirteen helcionelloids and two bivalves), adding considerable detail to the known fossil record of Early Cambrian molluscs from Laurentia. The occurrence of secondarily phosphatized shell surfaces together with phosphatic internal moulds in acid resistant residues allows new morphological details to be observed in several taxa. The fauna shows affinity to contemporaneous faunas from the Taconic allochthon of the eastern United States, but also to mollusc faunas of South Australia, China and Europe. The following new helcionelloid taxa are described: Capitoconus inclinatus n. gen. and n. sp. Capitoconus artus n. sp., Figurina groenlandica n. sp. and Latouchella ostenfeldense n. sp.


2007 ◽  
Vol 3 (3) ◽  
pp. 314-317 ◽  
Author(s):  
Christian B Skovsted ◽  
Glenn A Brock ◽  
Anna Lindström ◽  
John S Peel ◽  
John R Paterson ◽  
...  

Predation is arguably one of the main driving forces of early metazoan evolution, yet the fossil record of predation during the Ediacaran–Early Cambrian transition is relatively poor. Here, we present direct evidence of failed durophagous (shell-breaking) predation and subsequent shell repair in the Early Cambrian (Botoman) epibenthic mollusc Marocella from the Mernmerna Formation and Oraparinna Shale in the Flinders Ranges, South Australia. This record pushes back the first appearance of durophagy on molluscs by approximately 40 Myr.


2020 ◽  
Vol 10 (4) ◽  
pp. 20190103 ◽  
Author(s):  
M. Gabriela Mángano ◽  
Luis A. Buatois

The trace-fossil record provides a wealth of information to track the rise and early evolution of animals. It comprises the activity of both hard- and soft-bodied organisms, is continuous through the Ediacaran (635–539 Ma)– Cambrian (539–485 Ma) transition, yields insights into animal behaviour and their role as ecosystem engineers, and allows for a more refined characterization of palaeoenvironmental context. In order to unravel macroevolutionary signals from the trace-fossil record, a variety of approaches is available, including not only estimation of degree of bioturbation, but also analysis of ichnodiversity and ichnodisparity trajectories, and evaluation of the occupation of infaunal ecospace and styles of ecosystem engineering. Analysis of the trace-fossil record demonstrates the presence of motile benthic bilaterians in the Ediacaran, mostly feeding from biofilms. Although Ediacaran trace fossils are simple and emplaced at or immediately below the sediment surface, an increase in ichnofossil complexity, predation pressure, sediment disturbance and penetration depth is apparent during the terminal Ediacaran. Regardless of this increase, a dramatic rise in trace fossil diversity and disparity took place during the earliest Cambrian, underscoring that the novelty of the Fortunian (539–529 Ma) cannot be underestimated. The Fortunian still shows the persistence of an Ediacaran-style matground ecology, but is fundamentally characterized by the appearance of new trace-fossil architectural plans reflecting novel ways of interacting with the substrate. The appearance of Phanerozoic-style benthic ecosystems attests to an increased length and connectivity of the food web and improved efficiency in organic carbon transfer and nutrient recycling. A profound reorganization of the infaunal ecospace is recorded in both high-energy sand-dominated nearshore areas and low-energy mud-dominated offshore environments, during the early Cambrian, starting approximately during Cambrian Age 2 (529–521 Ma), but continuing during the rest of the early Cambrian. A model comprising four evolutionary phases is proposed to synthetize information from the Ediacaran–Cambrian trace-fossil record. The use of a rich ichnological toolbox; critical, systematic and comprehensive evaluation of the Ediacaran–Cambrian trace-fossil record; and high-resolution integration of the ichnological dataset and sedimentological information show that the advent of biogenic mixing was an important factor in fully marine environments at the dawn of the Phanerozoic.


2012 ◽  
Vol 149 (6) ◽  
pp. 1118-1123 ◽  
Author(s):  
AARON SAPPENFIELD ◽  
MARY DROSER ◽  
MARTIN KENNEDY ◽  
RYAN MCKENZIE

AbstractZoophycos-group burrows are prevalent elements of the post-Cambrian trace fossil record. Here we report the oldest specimens of Zoophycos from Lower Cambrian strata of the Lower Member Wood Canyon Formation in southeastern California. In addition to these being the oldest examples of this well-known trace fossil, the discovery of these specimens also reveals the presence of deposit feeding considerably earlier than has been suggested for the advent of this feeding style. This type of activity may have had a significant impact on sediment mixing during the Precambrian–Cambrian transition, though the rarity and shallow tier position of these specimens suggests otherwise.


2014 ◽  
Vol 88 (2) ◽  
pp. 284-298 ◽  
Author(s):  
James G. Gehling ◽  
Bruce N. Runnegar ◽  
Mary L. Droser

Ediacara fan-shaped sets of paired scratchesKimberichnus teruzziifrom the Ediacara Member of the Rawnsley Quartzite, South Australia, and the White Sea region of Russia, represent the earliest known evidence in the fossil record of feeding traces associated with the responsible bilaterian organism. These feeding patterns exclude arthropod makers and point to the systematic feeding excavation of seafloor microbial mats by large bilaterians of molluscan grade. Since the scratch traces were made into microbial mats, animals could crawl over previous traces without disturbing them. The trace maker is identified asKimberella quadrata, whose death masks co-occur with the mat excavation traces in both Russia and South Australia. The co-occurrence of animals and their systematic feeding traces in the record of the Ediacara biota supports previous trace fossil evidence that bilaterians existed globally before the Cambrian explosion of life in the ocean.


2017 ◽  
Author(s):  
Luis A. Buatois ◽  
◽  
Maria Gabriela Mangano

2017 ◽  
Vol 173 ◽  
pp. 96-108 ◽  
Author(s):  
M. Gabriela Mángano ◽  
Luis A. Buatois
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document